Abstract

Purpose: Exercise intolerance and dyspnoea are clinical symptoms in both heart failure (HF) reduced ejection fraction (HFrEF) and chronic obstructive pulmonary disease (COPD), which are suggested to be associated with musculoskeletal dysfunction. We tested the hypothesis that HFrEF + COPD patients would present lower muscle strength and greater fatigue compared to compared to the COPD group. Methods: We included 25 patients with HFrEF + COPD (100% male, age 67.8 ± 6.9) and 25 patients with COPD alone (100% male, age 66.1 ± 9.1). In both groups, COPD severity was determined as moderate-to-severe according to the GOLD classification (FEV1/FVC < 0.7 and predicted post-bronchodilator FEV1 between 30%-80%). Knee flexor–extensor muscle performance (torque, work, power and fatigue) were measured by isokinetic dynamometry in age and sex-matched patients with HFrEF + COPD and COPD alone; Functional capacity was assessed by the cardiopulmonary exercise test, the 6-min walk test (6MWT) and the four-minute step test. Results: The COPD group exhibited reduced lung function compared to the HFrEF + COPD group, as evidenced by lower FEV1/FVC (58.0 ± 4.0 vs. 65.5 ± 13.9; p < 0.0001, respectively) and FEV1 (51.3 ± 17.0 vs. 62.5 ± 17.4; p = 0.026, respectively) values. Regarding musculoskeletal function, the HFrEF + COPD group showed a knee flexor muscles impairment, however this fact was not observed in the knee extensors muscles. Power peak of the knee flexor corrected by muscle mass was significantly correlated with the 6MWT (r = 0.40; p < 0.05), number of steps (r = 0.30; p < 0.05) and work ratepeak (r = 0.40; p < 0.05) in the HFrEF + COPD and COPD groups. Conclusion: The presence of HFrEF in patients with COPD worsens muscular weakness when compared to isolated COPD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call