Abstract
The early detection of abnormal heart conditions is vital to identify heart problems and avoid sudden cardiac death. The people with similar heart conditions almost have similar electrocardiogram (ECG) signals. By analyzing the ECG signals’ patterns one can predict arrhythmias. Since the conventional methods of arrhythmia detection rely on observing morphological features of the ECG signals which are tedious and very time consuming, the automatic detection of arrhythmia is more preferable. In order to automate detection of heart diseases an adequate algorithm is required which could classify the ECG signals with unknown features according to the similarities between them and the ECG signals with known features. If this classifier can find the similarities precisely, the probability of arrhythmia detection is increased and this algorithm can become a useful means in laboratories. In this article a new classification method is presented to classify ECG signals more precisely based on dynamical model of the ECG signal. In this proposed method a fuzzy classifier is constructed and its simulation results indicate that this classifier can segregate the ECGs with an accuracy of 93.34%. To further improve the performance of this classifier, genetic algorithm is applied where the accuracy in prediction is increased up to 98.67%. This proposed method increases the accuracy of the ECG classification regarding more precise arrhythmia detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.