Abstract
Machine Learning (ML), which is one of the most prominent applications of Artificial Intelligence, is doing wonders in the research field of study. In this paper machine learning is used in detecting if a person has a heart disease or not. A lot of people suffer from cardiovascular diseases (CVDs), which even cost people their lives all around the world. Machine learning can be used to detect whether a person is suffering from a cardiovascular disease by considering certain attributes like chest pain, cholesterol level, age of the person and some other attributes. Classification algorithms based on supervised learning which is a type of machine learning can make diagnoses of cardiovascular diseases easy. The diagnosis and prognosis of cardiovascular disease are crucial medical tasks to ensure correct classification, which helps cardiologists provide proper treatment to the patient. Machine learning applications in the medical niche have increased as they can recognize patterns from data. Using machine learning to classify cardiovascular disease occurrence can help diagnosticians reduce misdiagnosis. This research develops a model that can correctly predict cardiovascular diseases to reduce the fatality caused by cardiovascular diseases. This paper proposes a method of k-modes clustering with Huang starting that can improve classification accuracy. Models such as random forest (RF), decision tree classifier (DT), multilayer perceptron (MP), and XGBoost (XGB) are used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: international journal of engineering technology and management sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.