Abstract

Heart Disease (HD) is often regarded as one of the deadliest human diseases. Therefore, early prediction of HD risks is crucial for prevention and treatment. Unfortunately, current clinical procedures for diagnosing HD are costly and often require an expert level of intervention. In response to this issue, researchers have recently developed various intelligent systems for the automated diagnosis of HD. Among the developed approaches, those based on artificial neural networks (ANNs) have gained more popularity due to their promising prediction results. However, to the authors’ knowledge, no research has attempted to exploit ANNs for feature extraction. Hence, research into bridging this gap is worthwhile for more excellent predictions. Motivated by this fact, this research proposes a new approach for HD prediction, utilizing a pre-trained Deep Neural Network (DNN) for feature extraction, Principal Component Analysis (PCA) for dimensionality reduction, and Logistic Regression (LR) for prediction. Cleveland, a publicly accessible HD dataset, was used to investigate the efficacy of the proposed approach (DNN + PCA + LR). Experimental results revealed that the proposed approach performs well on both the training and testing data, with accuracy rates of 91.79% and 93.33%, respectively. Furthermore, the proposed approach exhibited better performance when compared with the state-of-the-art approaches under most of the evaluation metrics used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.