Abstract

Heart and red blood cell endogenous antioxidant status and plasma lipids were investigated in hypertensive, 14-week-old spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats fed a standard commercial rat chow. Specific heart and red blood cell antioxidant enzyme activities, as well as the susceptibility of tissues to H2O2-induced glutathione (GSH) depletion and lipid peroxidation, were measured. Systolic blood pressure in SHR was greater than in WKY rats at 13 weeks of age (197 +/- 12 vs. 132 +/- 14 mmHg (1 mmHg = 133.3 Pa); p < or = 0.05), confirming the presence of hypertension in SHR. Red blood cell catalase (CAT) and superoxide dismutase (SOD) activities were greater (p < or = 0.05) in SHR than WKY rats. Red blood cell CAT activity was positively correlated (r = +0.634; p = 0.026) with SOD, which in turn was correlated (r = +0.709; p = 0.049) with systolic blood pressure. Heart SOD activity was higher (p < or = 0.05) in SHR, while glutathione reductase (GSSG-Red) activity was lower (p < or = 0.05) than in WKY rats. This reduced ability to recycle GSH in the heart coincided with greater (p < or = 0.05) levels of H2O2-induced lipid oxidation products in SHR. Plasma total cholesterol and triacylglycerol levels were lower (p < or = 0.05) in SHR than WKY rats, with no visible signs of atherosclerosis in either SHR or WKY rats. In summary, hypertension in SHR was associated with alterations in antioxidant enzyme profiles of red blood cells and heart, with the latter showing an increased susceptibility to in vitro lipid oxidation. Although hypertension is a recognized factor in the development of human atherosclerosis, spontaneously hypertensive rats did not exhibit signs of aortic plaque, reflecting the resistance of this species to the development of atherosclerosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call