Abstract

ABSTRACT Speech comprehension is remarkable for the immediacy with which the listener hears what is being said. Here, we focus on the neural underpinnings of this process in isolated spoken words. We analysed source-localised MEG data for nouns using Representational Similarity Analysis to probe the spatiotemporal coordinates of phonology, lexical form, and the semantics of emerging word candidates. Phonological model fit was detectable within 40–50 ms, engaging a bilateral network including superior and middle temporal cortex and extending into anterior temporal and inferior parietal regions. Lexical form emerged within 60–70 ms, and model fit to semantics from 100-110 ms. Strikingly, the majority of vertices in a central core showed model fit to all three dimensions, consistent with a distributed neural substrate for early speech analysis. The early interpretation of speech seems to be conducted in a unified integrative representational space, in conflict with conventional views of a linguistically stratified representational hierarchy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.