Abstract
Which properties of an orbifold can we “hear,” i.e., which topological and geometric properties of an orbifold are determined by its Laplace spectrum? We consider this question for a class of four-dimensional Kahler orbifolds: weighted projective planes $$M := {\mathbb{C}}P^2(N_1, N_2, N_3)$$ with three isolated singularities. We show that the spectra of the Laplacian acting on 0- and 1-forms on M determine the weights N 1, N 2, and N 3. The proof involves analysis of the heat invariants using several techniques, including localization in equivariant cohomology. We show that we can replace knowledge of the spectrum on 1-forms by knowledge of the Euler characteristic and obtain the same result. Finally, after determining the values of N 1, N 2, and N 3, we can hear whether M is endowed with an extremal Kahler metric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.