Abstract

Because of the close proximity of the cochlea, vestibular apparatus, and shared neurovascular structures, the static postural control of athletes who are deaf or hard of hearing (D/HoH) may be different from that of athletes who are hearing. Limited research is available to quantify differences between these athletes. To determine the effect of hearing status and stance condition on the static postural control of athletes. Cross-sectional study. Athletic training facilities. Fifty-five collegiate varsity athletes who were D/HoH (age = 20.62 ± 1.80 years, height = 1.73 ± 0.08 m, mass = 80.34 ± 18.92 kg) and 100 university club athletes who were hearing (age = 20.11 ± 1.59 years, height = 1.76 ± 0.09 m, mass = 77.66 ± 14.37 kg). Participants completed the Modified Clinical Test of Sensory Interaction and Balance on a triaxial force plate. Anteroposterior and mediolateral (ML) center-of-pressure (CoP) velocity, anteroposterior and ML CoP amplitude root mean square, and 95% ellipse sway area were calculated. Athletes who were D/HoH had a larger CoP velocity, larger ML root mean square, and larger sway area than those who were hearing (P values < .01). A significant main effect of stance condition was observed for all postural control variables (P values < .01). During the Modified Clinical Test of Sensory Interaction and Balance, athletes who were D/HoH demonstrated a larger sway area compared with athletes who were hearing. Therefore, individualized baseline assessments of static postural control may be warranted for athletes who are D/HoH as opposed to comparisons with existing normative data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call