Abstract
Pure functional programming languages preclude destructive updates of heap-allocated data. In such languages, all newly computed algebraic values claim freshly allocated heap space, which typically causes idiomatic programs to be notoriously inefficient when compared to their imperative and impure counterparts. We partly overcome this shortcoming by considering a syntactically light language construct for enabling user-controlled in-place updates of algebraic values. The resulting calculus, that is based on a combination of type-based uniqueness and constructor analysis, is guaranteed to maintain referential transparency and is fully compatible with existing run-time systems for nonstrict, pure functional languages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.