Abstract

With the increase in usage of Internet of Things devices (IoT), IoT is used in different sectors such as manufacturing, electric vehicles, home automation and healthcare. The IoT devices collected large volumes of data on different parameters at regular intervals. Storing a massive amount volume of IoT data securely is a complicated task. Presently, the majority of IoT devices use cloud storage to store the data, however, cloud servers require large storage and high computation. Due to third party cloud service provider (CSP) interaction, the management of IoT data security fully depends on the CSP. To manage these problems, a decentralized blockchain based secure storage is proposed in this work. In the proposed scheme, instead of CSP storage location, the patient health information is stored in the blockchain technique and the blockchain miners verify the transactions with the help of Elliptic Curve Cryptography (ECC). The miner verification process dynamically avoids adversary access. Similarly, the certificateless access is used in the proposed system to avoid certificate based issues. The blocks in the blockchain is going to be stored patient details in a decentralized storage location to avoid unauthorized access and ensure the authenticity of data. The use of blockchain eliminates the need for third party public auditing process through immutable storage. This work illustrates secure communication and immutable data storage without the intervention of CSP. The communication overhead reduced by nearly 10 to 40% and authentication improved by 10 to 20% while confidentiality increased by 5% in comparison to existing techniques. Through this technique, data confidentiality, integrity and availability is ensured.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call