Abstract
The health and welfare of livestock are significant for ensuring the sustainability and profitability of the agricultural industry. Addressing efficient ways to monitor and report the health status of individual cows is critical to prevent outbreaks and maintain herd productivity. The purpose of the study is to develop a machine learning (ML) model to classify the health status of milk cows into three categories. In this research, data are collected from existing non-invasive IoT devices and tools in a dairy farm, monitoring the micro- and macroenvironment of the cow in combination with particular information on age, days in milk, lactation, and more. A workflow of various data-processing methods is systematized and presented to create a complete, efficient, and reusable roadmap for data processing, modeling, and real-world integration. Following the proposed workflow, the data were treated, and five different ML algorithms were trained and tested to select the most descriptive one to monitor the health status of individual cows. The highest result for health status assessment is obtained by random forest classifier (RFC) with an accuracy of 0.959, recall of 0.954, and precision of 0.97. To increase the security, speed, and reliability of the work process, a cloud architecture of services is presented to integrate the trained model as an additional functionality in the Amazon Web Services (AWS) environment. The classification results of the ML model are visualized in a newly created interface in the client application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.