Abstract
The state of health (SOH) prediction of lithium-ion batteries is a pivotal function within the battery management system (BMS), and achieving accurate SOH predictions is crucial for ensuring system safety and prolonging battery lifespan. To enhance prediction performance, this paper introduces an SOH prediction model based on an improved sparrow algorithm and support vector regression (ISSA-SVR). The model uses nonlinear weight reduction (NWDM) to enhance the search capability of the Sparrow algorithm and combines a mixed mutation strategy to reduce the risk of local optimal traps. Then, by analyzing the characteristics of different voltage ranges, the charging time from 3.8 V to 4.1 V, the discharge time of the battery, and the number of cycles are selected as the feature set of the model. The model’s prediction capabilities are validated across various working environments and training sample sizes, and its performance is benchmarked against other algorithms. Experimental findings indicate that the proposed model not only confines SOH prediction errors to within 1.5% but also demonstrates robust adaptability and widespread applicability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.