Abstract
The high moisture content and perishable organic waste of municipal solid waste (MSW) in China have caused the severe odor nuisance to be one of the crucial reasons for resident complaints. Understanding the environmental risks of odorous compounds lays the foundations for resolving the problems. This study collected concentration data of 86 odorous compounds in five types of MSW processing facilities/equipment which can well represent the whole process of MSW stream, including waste bins and transfer stations for collection, compost plants and anaerobic digestion plants for utilization, and landfills for final disposal. The results revealed that the occupational health risks of odorants were not fully consistent with the compound concentrations and olfactory annoyance. Higher odorous compound concentrations and more severe olfactory annoyance can be found in the MSW utilization and disposal facilities, but the occupational carcinogenic risk (2.79 × 10−5–1.12 × 10−3) was non-negligible along the whole MSW stream. Aromatic hydrocarbons and halogenated hydrocarbons were crucial contributors to the carcinogenic risk of odorous compounds emission from these facilities. Particularly for estimating the adverse impact range of MSW facilities, the carcinogenic risk was the most critical factor, implying impact distance of ∼1.5 km for MSW transfer station and ∼5 km for landfill, and even higher for the regions (such as southwest China) with lower wind speed and higher atmospheric stability. In addition to current regulations, another 5 compounds (acetaldehyde, 1,3,5-trimethylbenzene, 1,2-dichloroethane, acrolein, and benzyl chloride) that displayed high carcinogenic risks were suggested to be concerned. This study provided insights for the policymakers regarding MSW odors management, especially underscoring the importance of considering the health risks of odorous compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.