Abstract

Probabilistic lifetime cancer risks and non-cancer risks of trihalomethanes (THMs) through ingestion, dermal contact, and inhalation exposure in 88 drinking water treatment plants (WTPs) with raw waters from five water systems (WSs) in Jiangsu Province were analyzed and compared. Concentrations of THMs in finished water of study WTPs varied, ranging from 18.81 to 38.96 μg/L, which are lower than the maximum of 80 μg/L recommended by USEPA. The results of health risk assessment indicated that cancer risk as well as non-cancer risks of THMs in WTPs sourced from five water systems decreased in the order of WS3 > WS5 > WS2 > WS1 > WS4. The comparison among multiple exposure routes indicated that when non-boiled drinking water is consumed, ingestion has the highest exposure route, with exposure values greater than dermal contact and inhalation for WTPs with raw water from all five water systems. However, when drinking boiled water, dermal contact is the major risk source for WTPs with raw water from WS1 and WS2, instead of dermal contact, inhalation becomes the major risk source for WTPs with raw water from WS3, WS4, and WS5. In WTPs with raw water from water systems WS1, WS3, WS4, and WS5, dibromochloromethane (DBCM) in THMs has the highest contribution to cancer risk, while chloroform in THMs has the highest contribution to non-cancer risk. However, in WTPs with raw water from water system WS2, bromodichloromethane (BDCM) has the highest contribution to both cancer risk and non-cancer risk. The results also indicated that females are prone to cancer risk induced by THMs since Chinese people are accustomed to drinking boiled water. The results supply valuable information for health departments to put forward more specific and efficient policies to control water borne diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.