Abstract

Present study aimed to provide a baseline data on arsenic (As) and other potentially toxic element (PTEs; Cd, Cr, Cu, Ni, and Pb) contamination in groundwater and soils (surface and sub-surface) from an industrial area of district Gujrat, Pakistan. Statistical parameters, principal component analysis-multiple linear regression (PCA-MLR), and health risk assessment model were used to elaborate the interrelations, source contributor, and associated health risks. This study revealed that the concentrations of Cd, Cr, Cu, and Pb in drinking water were within the permissible limits of the World Health Organization (WHO). However, As and Ni concentrations exceeded the WHO limits of 10μg/L for As and 0.07mg/L for Ni. In soils, the concentration of Cr was within permissible limits, whereas As, Cd, Cu, Ni, and Pb exceeded the prescribed values. Solid waste and industrial effluents from the area also contained high levels of As, Cd, Cr, Cu, Ni, and Pb. Calculated health index of As and other PTEs for industrial site and control area was less than 1 which indicated that the groundwater was assumed to be safe for drinking. High contamination of As (15mg/kg) and other PTEs (Pb was 978, Cr 51, Cu 111, Cd 68, and Ni was 90mg/kg, respectively) in upper soil could be due to the discharge of industrial effluent prior to the treatment, which signifies the industrial contribution towards As and heavy metal contamination. It can be concluded that critical examination of soil profile affinity to the respective, industrial waste pollutants can reduce the health risks to the local community. This trend not only reveals the geochemistry of the area but also useful for developing a link to access health risk and associated remediation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.