Abstract

With the widespread use of lithium-ion batteries, battery failure will bring serious safety problems and economic losses. State of health (SOH) is a key and challenging issue in the prognostics and health management of lithium-ion batteries. In this paper, we propose a new SOH estimation method for lithium-ion batteries with multi-feature optimization. Firstly, we obtain the initial feature set by sampling the voltage curve and incremental capacity curve to comprehensively describe the battery aging process. Then, the Gaussian process regression model is improved by designing a dual kernel to track the long-term battery aging process with dynamic fluctuations. Finally, we introduce a genetic algorithm to optimize the SOH estimator establishing process by considering the estimation accuracy, the number of features, and the difficulty of feature acquisition. To verify the effectiveness of the proposed method, commercial batteries are tested under different charging and discharging conditions. The experimental results show that the proposed method with multi-feature optimization can achieve a prediction error of less than 0.6%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.