Abstract

This study deals with a structural health monitoring approach for adhesively bonded carbon fiber reinforced polymer joints. A modification of an epoxy based adhesive film with single wall carbon nanotubes allows for electrical resistance measurements through the joint. Cyclic fatigue tests of adhesively bonded scarf joints with simultaneous electrical resistance measurements are conducted to investigate the damage detection and localization of repaired composite parts during operation. The measured electrical resistance changes are compared to results from digital image correlation. Crack initiation and growth can be detected by an increase of electrical resistance. Furthermore, it is possible with parallel oriented ink-jet printed circuits to localize the damages occurred.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.