Abstract

Critical civil infrastructures such as bridges, dams, and pipelines present a major investment and their safety and security affect the life of citizens and national economic development. So it is very important for engineers and researchers to monitor their integrity while in operation and throughout. In recent years, the piezoelectric-ceramic (PZT) patches, which serve both as impedance sensors and actuators, have been increasingly used for structural health monitoring. This paper presents an impedance-based method, which utilizes the electro-mechanical coupling property of PZT sensors. There are a lot of advantages of this method, such as not based on any physical models, sensitive to tiny damage for its high frequency characteristics. An engineering application of this method for health monitoring of a continuous rigid frame bridge is implemented in this study. Some PZT active sensors are embedded into critical sections of the continuous rigid-frame box beam. The electrical admittances of these distributed PZT sensors are measured when the bridge is constructing or suffering from operational loads. For comparison, strain gauges are arranged in adjacent regions of these PZT sensors to obtain the strains of concrete around them at the same time. Based on the admittance sigatures obtained form PZT sensors and the strain measurements of concrete around them, the health status of the bridge is monitored and evaluated successfully.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.