Abstract
BackgroundWith the rapid growth of healthcare services, health insurance fraud detection has become an important measure to ensure efficient use of public funds. Traditional fraud detection methods have tended to focus on the attributes of a single visit and have ignored the behavioural relationships of multiple visits by patients.MethodsWe propose a health insurance fraud detection model based on a multilevel attention mechanism that we call MHAMFD. Specifically, we use an attributed heterogeneous information network (AHIN) to model different types of objects and their rich attributes and interactions in a healthcare scenario. MHAMFD selects appropriate neighbour nodes based on the behavioural relationships at different levels of a patient’s visit. We also designed a hierarchical attention mechanism to aggregate complex semantic information from the interweaving of different levels of behavioural relationships of patients. This increases the feature representation of objects and makes the model interpretable by identifying the main factors of fraud.ResultsExperimental results using real datasets showed that MHAMFD detected health insurance fraud with better accuracy than existing methods.ConclusionsExperiment suggests that the behavioral relationships between patients’ multiple visits can also be of great help to detect health care fraud. Subsequent research fraud detection methods can also take into account the different behavioral relationships between patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.