Abstract
Time-to-failure (TTF) prediction of bearings is vital to the prognostic and health management of rotating machines. Owing to the shifty degradation trends (DTs) of bearings, it is still difficult to obtain accurate TTF prognostic results. To solve this problem, this paper proposes an online, continuously updated TTF prognostic method based on health indicator (HI) similarity analysis and DT detection. First, multiple degradation features are extracted and fused to construct principal component HI by using dynamic principal component analysis. Next, exponential degradation models are fitted using the HI values for future state prediction. By regarding several HI values as a tested segment, the DT is detected by analyzing the similarity of the tested segment and the fitted curve. Finally, TTF is predicted by extrapolating the DT to hit the estimated failure threshold. Two case studies based on public bearing datasets demonstrate the superiority of the proposed approach over state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.