Abstract

BackgroundEnvironmental estrogens in wastewater treatment work (WwTW) effluents are well established as the principal cause of reproductive disruption in wild fish populations, but their possible role in the wider health effects of effluents has not been established.ObjectivesWe assessed the contribution of estrogens to adverse health effects induced in a model fish species by exposure to WwTW effluents and compared effects of an estrogen alone and as part of a complex mixture (i.e., spiked into effluent).MethodsGrowth, genotoxic, immunotoxic, metabolic, and endocrine (feminized) responses were compared in fathead minnows (Pimephales promelas) exposed for 21 days to a potent estrogenic effluent, a weakly estrogenic effluent before and after spiking with a steroidal estrogen [17α-ethinyl-estradiol (EE2)], and to EE2 alone.ResultsIn addition to endocrine disruption, effluent exposure induced genotoxic damage, modulated immune function, and altered metabolism; many of these effects were elicited in a sex-specific manner and were proportional to the estrogenic potencies of the effluents. A key finding was that some of the responses to EE2 were modified when it was present in a complex mixture (i.e., spiked into effluent), suggesting that mixture effects may not be easily modeled for effluent discharges or when the chemicals impact on a diverse array of biological axes.ConclusionThese data reveal a clear link between estrogens present in effluents and diverse, adverse, and sex-related health impacts. Our findings also highlight the need for an improved understanding of interactive effects of chemical toxicants on biological systems for understanding health effects of environmental mixtures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.