Abstract

BackgroundSpatially resolved exposure models are increasingly used in epidemiology. We previously reported that, although exhibiting a moderate correlation, pregnancy nitrogen dioxide (NO2) levels estimated by the nearest air quality monitoring station (AQMS) model and a geostatistical model, showed similar associations with infant birth weight. ObjectivesWe extended this study by comparing a total of four exposure models, including two highly spatially resolved models: a land-use regression (LUR) model and a dispersion model. Comparisons were made in terms of predicted NO2 and particle (aerodynamic diameter<10μm, PM10) exposure and adjusted association with birth weight. MethodsThe four exposure models were implemented in two French metropolitan areas where 1026 pregnant women were followed as part of the EDEN mother–child cohort. ResultsCorrelations between model predictions were high (≥0.70), except for NO2 between the AQMS and both the LUR (r=0.54) and dispersion models (r=0.63). Spatial variations as estimated by the AQMS model were greater for NO2 (95%) than for PM10 (22%). The direction of effect estimates of NO2 on birth weight varied according to the exposure model, while PM10 effect estimates were more consistent across exposure models. ConclusionsFor PM10, highly spatially resolved exposure model agreed with the poor spatial resolution AQMS model in terms of estimated pollutant levels and health effects. For more spatially heterogeneous pollutants like NO2, although predicted levels from spatially resolved models (all but AQMS) agreed with each other, our results suggest that some may disagree with each other as well as with the AQMS regarding the direction of the estimated health effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.