Abstract

Background & aimsMalnutrition is prevalent among hospitalised patients, and increases the morbidity, mortality, and medical costs; yet nutritional assessments on admission are not routine. This study assessed the clinical and economic benefits of using an artificial intelligence (AI)-based rapid nutritional diagnostic system for routine nutritional screening of hospitalised patients. MethodsA nationwide multicentre randomised controlled trial was conducted at 11 centres in 10 provinces. Hospitalised patients were randomised to either receive an assessment using an AI-based rapid nutritional diagnostic system as part of routine care (experimental group), or not (control group). The overall medical resource costs were calculated for each participant and a decision-tree was generated based on an intention-to-treat analysis to analyse the cost-effectiveness of various treatment modalities. Subgroup analyses were performed according to clinical characteristics and a probabilistic sensitivity analysis was performed to evaluate the influence of parameter variations on the incremental cost-effectiveness ratio (ICER). ResultsIn total, 5763 patients participated in the study, 2830 in the experimental arm and 2933 in the control arm. The experimental arm had a significantly higher cure rate than the control arm (23.24% versus 20.18%; p = 0.005). The experimental arm incurred an incremental cost of 276.52 CNY, leading to an additional 3.06 cures, yielding an ICER of 90.37 CNY. Sensitivity analysis revealed that the decision-tree model was relatively stable. ConclusionThe integration of the AI-based rapid nutritional diagnostic system into routine inpatient care substantially enhanced the cure rate among hospitalised patients and was cost-effective. RegistrationNCT04776070 (https://clinicaltrials.gov/study/NCT04776070)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.