Abstract

Structural health monitoring is important to ensuring the health and safety of dams. An inverse analysis method based on a novel hybrid fireworks algorithm (FWA) and the radial basis function (RBF) model is proposed to diagnose the health condition of concrete dams. The damage of concrete dams is diagnosed by identifying the elastic modulus of materials using the displacement changes at different reservoir water levels. FWA is a global optimization intelligent algorithm. The proposed hybrid algorithm combines the FWA with the pattern search algorithm, which has a high capability for local optimization. Examples of benchmark functions and pseudo-experiment examples of concrete dams illustrate that the hybrid FWA improves the convergence speed and robustness of the original algorithm. To address the time consumption problem, an RBF-based surrogate model was established to replace part of the finite element method in inverse analysis. Numerical examples of concrete dams illustrate that the use of an RBF-based surrogate model significantly reduces the computation time of inverse analysis with little influence on identification accuracy. The presented hybrid FWA combined with the RBF network can quickly and accurately determine the elastic modulus of materials, and then determine the health status of the concrete dam.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call