Abstract
The escalating level of vehicle electrification and intelligence makes higher requirements for the energy management strategy (EMS) of fuel cell vehicles. Environmental and road conditions can significantly influence the power demand of the load, thereby affecting the lifespan and efficiency of vehicular energy systems. To ensure that the vehicle is always in optimal working condition, this study innovatively proposes a health-conscious EMS framework based on twin delayed deep deterministic policy gradient (TD3) algorithm for fuel cell hybrid electric bus (FCHEB). First, the environment and look-ahead road information obtained through vehicle sensors, GPS and Geographic Information System is used to establish the energy management problem formulation. Secondly, a TD3-based data-driven EMS is developed with the objective of optimizing hydrogen fuel economy, fuel cell durability and battery thermal health status. Finally, the strategy validation is performed in a developed validation environment that contains terrain information, ambient temperature, and real-world collected driving conditions. The validation results indicate that compared to the state-of-the-art TD3-based EMS, the proposed EMS can improve battery life by 28.02 % and overall vehicle economy by 8.92 %.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.