Abstract

Fuel cell lifetime is strongly affected by dynamic conditions. Most existing energy management works only focus on the fuel cell durability protection from the perspective of output power slope, without deeply considering the influence of the important parameters inside the stack. However, considering the variation of stack internal parameters (mechanism analysis) is more significant for fuel cell lifetime evaluation. In this paper, a health-aware model predictive control (HA-MPC) energy management strategy is proposed for fuel cell electric vehicle. A fuel cell health state model is established from the perspective of stack hydrogen excess ratio (HER), oxygen excess ratio (OER) and humidity through the hybrid modeling method. The fuel cell mechanism model and the low-dimensional data-driven model are established through the grey-box model estimation method and genetic algorithm-based radial basis function (GA-RBF) neural network. Then the objective function of energy management strategy is developed considering the total equivalent hydrogen consumption and stack improper parameter changes of HER, OER and humidity. Comparing with model predictive control strategy based on the typical power cost function, the HA-MPC can effectively reduce the steep drop of HER and OER in low power region by 3.58% and 4.41%, which can protect the fuel cell system lifetime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.