Abstract
Traditional health assessment models work well under the assumption that the test and training samples obey a similar distribution. However, it is practically impossible to eliminate domain shifts between different tasks. Thus, most work tries to establish a data-driven approach via domain adaptation to accomplish transfer learning between different operating conditions. Sufficient target data are needed to participate in the training, which may not normally be available due to most working scenarios being unseen. An adversarial domain generalization framework with regularization learning (ADGR) is proposed for the health assessment to mine latent domains. Also, the latent domain is expanded to the unseen domain as possible. More specifically, the diversity of the sample distribution is augmented by adversarial training and the maximization of the domain discrepancy between the latent and source domains. Meanwhile, self-supervised interdomain regularization and semantical consistent regularization are proposed to mitigate the feature drift of the domain classifier and semantic divergence between source and latent domains. The case study shows that the ADGR-based health assessment approach achieves competitive prediction accuracy under unseen conditions, demonstrating its potential as a diagnostic solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.