Abstract

As commonly used forced convection air cooling devices in electronics, cooling fans are crucial for guaranteeing the reliability of electronic systems. In a cooling fan assembly, fan bearing failure is a major failure mode that causes excessive vibration, noise, reduction in rotation speed, locked rotor, failure to start, and other problems; therefore, it is necessary to conduct research on the health assessment of cooling fan bearings. This paper presents a vibration-based fan bearing health evaluation method using comblet filtering and exponentially weighted moving average. A new health condition indicator (HCI) for fan bearing degradation assessment is proposed. In order to collect the vibration data for validation of the proposed method, a cooling fan accelerated life test was conducted to simulate the lubricant starvation of fan bearings. A comparison between the proposed method and methods in previous studies (i.e., root mean square, kurtosis, and fault growth parameter) was carried out to assess the performance of the HCI. The analysis results suggest that the HCI can identify incipient fan bearing failures and describe the bearing degradation process. Overall, the work presented in this paper provides a promising method for fan bearing health evaluation and prognosis.

Highlights

  • The integration level and energy consumption of electronic circuits is increasing, resulting in increased heat flux densities and temperatures in electronic devices

  • Cooling fans are commonly used in microelectronics

  • This paper presents a coherent solution for the health assessment of cooling fan bearings

Read more

Summary

Introduction

The integration level and energy consumption of electronic circuits is increasing, resulting in increased heat flux densities and temperatures in electronic devices. According to [1], temperature has a great impact on electronic component reliability, and the failure rate of a component increases exponentially as the temperature increases. It is necessary to utilize thermal design techniques so as to reduce the internal temperature of electronic devices. The working principle of thermal design is to accomplish the following: (1) lessen heat dissipation by utilizing low energy consumption techniques and reducing the number of heat-generating components; and (2) move heat out through conduction, convection, or radiation. As an active heat transfer device, have been used in many electronics systems to lower the system temperature and improve reliability

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.