Abstract

Ethylene (ET) is ubiquitous in the environment and is produced both naturally and due to anthropogenic sources. Interestingly, the majority of ambient ET contribution is from natural sources and anthropogenic sources contribute only a minor portion. While microbes and plants naturally produce a large amount of ET, mammals are reported to produce only a small amount of ET endogenously. Anthropogenic sources of ET include the combustion of gas, fuel, coal and biomass. ET is also widely used as an intermediate to make other chemicals and products and is also used for controlled ripening of fruits and vegetables. Although, a review of human and laboratory animal studies indicate ET to be relatively non-toxic, there is concern about the potential toxicity of ET because ET is metabolically converted to ethylene oxide (EtO). EtO has been classified to be carcinogenic to human by the inhalation route by the International Agency for Research on Cancer (IARC) cancer. ET, however, has been classified as a Group 3 chemical which indicates it is not classified as a human carcinogen by IARC. Several studies have reported ET to cause adverse effects to plant species (vegetation effects) at concentrations that are not adverse to humans. Therefore, the Texas Commission of Environmental Quality (TCEQ) conducted detailed health and welfare (odor and vegetation) based assessments of ET to develop both health and vegetative based toxicity factors in 2008 in accordance with TCEQ guidelines. The health assessment based on well-conducted animal toxicity studies resulted in identification of higher points of departures and subsequently higher effect screening levels (ESLs) that were more than a magnitude higher than the threshold adverse effect level for vegetative effects for ET. Further, based on a weight-of-evidence evaluation of potential mutagenic and carcinogenic mode-of-actions for ET it appears the metabolic conversion of ET to EtO is of insufficient magnitude to cause concern of potential cancer risk. Therefore, the short-term ESL for air permit reviews and air monitoring evaluations is the vegetation-based ESL of 1200ppb as it is more than a magnitude lower than the health-based acute ESL of 150,000ppb. Similar to the acute derivation, the chronic evaluation resulted in the derivation of a chronic vegetation based ESL of 30ppb that was much lower than the chronic ESL of 1600ppb. In summary, the TCEQ’s acute and chronic ESLs for vegetation will protect the general public from short-term and long-term adverse health and welfare effects. The general public includes children, the elderly, pregnant women, and people with pre-existing health conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call