Abstract

Perovskite solar cells (PSCs) have attracted extensive attention in photovoltaic applications owing to their superior efficiency, and the buried interface plays a significant role in determining the efficiency and stability of PSCs. Herein, a plant-derived small molecule, ergothioneine (ET), is adopted to heal the defective buried interface of CsPbIBr2-based PSC to improve power conversion efficiency (PCE). Because of the strong interaction between Lewis base groups (-C═O and -C═S) in ET and uncoordinated Pb2+ in the perovskite film from the theoretical simulations and experimental results, the defect density of the CsPbIBr2 perovskite film is significantly reduced, and therefore, the nonradiative recombination in the corresponding device is simultaneously suppressed. Consequently, the target device achieves a high PCE of 11.13% with an open-circuit voltage (VOC) of 1.325 V for hole-free, carbon-based CsPbIBr2 PSCs and 14.56% with a VOC of 1.308 V for CsPbI2Br PSCs. Furthermore, because of the increased ion migration energy, the detrimental phase segregation in this mixed-halide perovskite is weakened, delivering excellent long-term stability for the unencapsulated device in ambient conditions over 70 days with a 96% retention rate of initial efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.