Abstract

Devising energy-efficient scheduling strategies for real-time periodic tasks on heterogeneous platforms is a challenging as well as a computationally demanding problem. This study proposes a low-overhead heuristic strategy called, HEALERS, for dynamic voltage and frequency scaling (DVFS)-cum-dynamic power management (DPM) enabled energy-aware scheduling of a set of periodic tasks executing on a heterogeneous multi-core system. The presented strategy first applies deadline-partitioning to acquire a set of distinct time-slices. At any time-slice boundary, the following three-phase operations are applied to obtain a schedule for the next time-slice: first, it computes the fragments of the execution demands of all tasks onto each of the different processing cores in the platform. Next, it generates a schedule for each task on one or more processing cores such that the total execution demand of all tasks is satisfied. Finally, HEALERS applies DVFS and DPM on all processing cores so that energy consumption within the time-slice may be minimized while not jeopardising execution requirements of the scheduled tasks. Experimental results show that the proposed scheme is not only able to achieve appreciable energy savings with respect to state-of-the-art (5–42% on average) but also enables a significant improvement in resource utilisation (as high as 58%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.