Abstract
Extremely low hysteresis, high mechanical strength, superior toughness, and excellent healability are essential for stretchable ionic conductors to enhance their reliability and meet for cutting-edge applications. However, the fabrication of stretchable ionic conductors with such mutually exclusive properties remains challenging. Herein, extremely low-hysteresis and healable ionic conductors with a tensile strength of ≈8.9MPa and toughness of ≈23.2MJ m-3 are fabricated through the complexation of 4-carboxybenzaldehyde (CBA) grafted poly(vinyl alcohol) (PVA) (denoted as PVA-CBA) and poly (allylamine hydrochloride) (PAH) followed by acidification and ion-loading steps. The acidification step generates the PVA-CBA/PAH ionic conductors with in situ formed dynamic hydrophobic domains that lock and stabilize noncovalent interactions. This significantly minimizes the energy dissipation of the ionic conductors during cyclic mechanical loading (≤200% strain), resulting in ionic conductors with extremely low hysteresis (≈5%). The fractured ionic conductors can be healed at 60°C to restore their original properties. Because of the extremely low hysteresis, the PVA-CBA/PAH ionic conductors show a highly stable and reproducible electrical response over 5000 uninterrupted loading-unloading cycles at a strain of 200%. The ionic conductor based sensors exhibit a high sensitivity to a wide range of strains (1-500%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.