Abstract

A healable transparent capacitive touch screen sensor has been fabricated based on a healable silver nanowire-polymer composite electrode. The composite electrode features a layer of silver nanowire percolation network embedded into the surface layer of a polymer substrate comprising an ultrathin soldering polymer layer to confine the nanowires to the surface of a healable Diels-Alder cycloaddition copolymer and to attain low contact resistance between the nanowires. The composite electrode has a figure-of-merit sheet resistance of 18 Ω/sq with 80% transmittance at 550 nm. A surface crack cut on the conductive surface with 18 Ω is healed by heating at 100 °C, and the sheet resistance recovers to 21 Ω in 6 min. A healable touch screen sensor with an array of 8×8 capacitive sensing points is prepared by stacking two composite films patterned with 8 rows and 8 columns of coupling electrodes at 90° angle. After deliberate damage, the coupling electrodes recover touch sensing function upon heating at 80 °C for 30 s. A capacitive touch screen based on Arduino is demonstrated capable of performing quick recovery from malfunction caused by a razor blade cutting. After four cycles of cutting and healing, the sensor array remains functional.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.