Abstract
Lubricant (or oil)-impregnated porous surface has been considered as a promising surface treatment to realize multifunctionality. In this study, silicone oil was impregnated into a hard porous oxide layer created by the plasma electrolytic oxidation (PEO) of aluminum (Al) alloys. The monolayer of polydimethylsiloxane (PDMS) from silicone oil is formed on a porous oxide layer; thus, a water-repellent slippery oil-impregnated surface is realized on Al alloy, showing a low contact angle hysteresis of less than 5°. This water repellency significantly enhanced the corrosion resistance by more than four orders of magnitude compared to that of the PEO-treated Al alloy without silicone oil impregnation. The silicone oil within the porous oxide layer also provides a lubricating effect to improve wear resistance by reducing friction coefficients from ~0.6 to ~0.1. In addition, because the PDMS monolayer can be restored by frictional heat, the water-repellent surface is tolerant to physical damage to the oxide surface. Hence, the results of this fundamental study provide a new approach for the post-treatment of PEO for Al alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.