Abstract

Different from living organisms, artificial materials can only undergo a limited number of damage/healing processes and cannot heal severe damage. As an alternative to solve this problem, we report in this study the fabrication of erasable, optically transparent and healable films by exponential layer-by-layer assembly of poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO). The hydrogen-bonded PAA/PEO films are highly transparent, capable of conveniently healing damages and being erased under external stimuli. The PAA/PEO films can heal damages such as scratches and deep cuts for multiple times in the same location by exposure to pH 2.5 water or humid N2 flow. The healability of the PAA/PEO films originates from the reversibility of the hydrogen bonding interaction between PAA and PEO, and the tendency of films to flow upon adsorption of water. When the damage exceeds the capability of the films to repair, the damaged films can be conveniently erased from substrates to facilitate the replacement of the damaged films with new ones. The combination of healability and erasibility provides a new way to the design of transparent films with enhanced reliability and extended service life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call