Abstract

Dematin is an actin-binding and bundling protein of the erythrocyte membrane skeleton. Dematin is localized to the spectrin-actin junctions, and its actin-bundling activity is regulated by phosphorylation of cAMP-dependent protein kinase. The carboxyl terminus of dematin is homologous to the "headpiece" domain of villin, an actin-bundling protein of the microvillus cytoskeleton. The headpiece domain contains an actin-binding site, a cAMP-kinase phosphorylation site, plays an essential role in dematin self-assembly, and bundles F-actin in vitro. By using homologous recombination in mouse embryonic stem cells, the headpiece domain of dematin was deleted to evaluate its function in vivo. Dematin headpiece null mice were viable and born at the expected Mendelian ratio. Hematological evaluation revealed evidence of compensated anemia and spherocytosis in the dematin headpiece null mice. The headpiece null erythrocytes were osmotically fragile, and ektacytometry/micropore filtration measurements demonstrated reduced deformability and filterability. In vitro membrane stability measurements indicated significantly greater membrane fragmentation of the dematin headpiece null erythrocytes. Finally, biochemical characterization, including the vesicle/cytoskeleton dissociation, spectrin self-association, and chemical crosslinking measurements, revealed a weakened membrane skeleton evidenced by reduced association of spectrin and actin to the plasma membrane. Together, these results provide evidence for the physiological significance of dematin and demonstrate a role for the headpiece domain in the maintenance of structural integrity and mechanical properties of erythrocytes in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.