Abstract

The path following of underactuated autonomous surface vehicle (ASV) with line-of-sight (LOS)-based heading and velocity guidance is studied thoroughly in the presence of complex uncertainties and asymmetric input saturation that actuators are likely to suffer from. On the basis of the extended-state-observer-based LOS (ELOS) principle and guided velocity design strategies, a finite-time heading and velocity guidance control (HVG) scheme is presented. Firstly, an improved ELOS (IELOS) is developed such that the unknown sideslip angle can be estimated directly, instead of requiring one more step to calculate it by the output of observers and relying on the equivalent assumption between actual heading angle and guidance angle. Secondly, a new form of velocity guidance is designed by considering magnitude and rate constraints and path’s curvature, keeping in line with ASV’s manoeuvrability and agility. Then asymmetric saturation is considered and studied by designing projection-based finite-time auxiliary systems to avoid parameter drift. All error signals of the closed-loop system of ASV are forced to converge to an arbitrarily small neighbourhood of the origin within a finite settling time by the HVG scheme. The expected performance of the presented strategy is demonstrated via a series of simulations and comparisons. In addition, to show the strong robustness of the presented scheme, stochastic noises modelled by Markov process, bidirectional step signals and faults both multiplication and addition types are considered in simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call