Abstract
Deuterium (2H) and nitrogen-14 (14N) NMR spectroscopy were used to investigate the molecular dynamics of a lyotropic liquid crystal. Deuterium spectral densities of motion for the C1 deuterated site on the chain of the molecule decylammonium chloride (DACl) at the Larmor frequency 61.4 MHz and those for the (14)N at the headgroup (NH(3)(+)) at 28.9 MHz are analyzed quantitatively in the lamellar phase of the DACl-d(11)/water binary system to shed light on the headgroup dynamics. The motional model used is the small step rotational diffusion for reorientations plus internal rotations of the methylene group in the strong collision limit. The tumbling motion of the long axis of the DACl molecule in the aggregates seems to be as rigorous as the molecular spinning motion, likely due to the proposed motional model. The similarity of deuterium spectral densities from the C1 and C2/C3 sites may indicate a relatively rigid unit of C1-C2-C3 in the backbone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Journal of Physical Chemistry B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.