Abstract

BackgroundA challenge for practitioners using spinal manipulation is identifying when an intervention is required. It has been recognized that joint pain can interfere with the ability to position body parts accurately and that the recent history of muscle contraction can play a part in that interference. In this study, we tested whether repositioning errors could be induced in a normal population by contraction or shortening of the neck muscles.MethodsIn the experimental protocol, volunteers free of neck problems first found a comfortable neutral head posture with eyes closed. They deconditioned their cervical muscles by moving their heads 5 times in either flexion/extension or lateral flexion and then attempted to return to the same starting position. Two conditioning sequences were interspersed within the task: hold the head in an extended or laterally flexed position for 10 seconds; or hold a 70% maximum voluntary contraction in the same position for 10 seconds. A computer-interfaced electrogoniometer was used to measure head position while a force transducer coupled to an auditory alarm signaled the force of isometric contraction. The difference between the initial and final head orientation was calculated in 3 orthogonal planes. Analysis of variance (1-way ANOVA) with a blocking factor (participants) was used to detect differences in proprioceptive error among the conditioning sequences while controlling for variation between participants.ResultsForty-eight chiropractic students participated: 36 males and 12 females, aged 28.2 ± 4.8 yrs. During the neck extension test, actively contracting the posterior neck muscles evoked an undershoot of the target position by 2.1° (p <0.001). No differences in repositioning were found during the lateral flexion test.ConclusionThe results suggest that the recent history of cervical paraspinal muscle contraction can influence head repositioning in flexion/extension. To our knowledge this is the first time that muscle mechanical history has been shown to influence proprioceptive accuracy in the necks of humans. This finding may be used to elucidate the mechanism behind repositioning errors seen in people with neck pain and could guide development of a clinical test for involvement of paraspinal muscles in cervical pain and dysfunction.

Highlights

  • An important consideration for practitioners using spinal manipulation is knowing when to intervene

  • The Active Hold conditioning sequence evoked an undershoot of the target position (-1.40°, Table 1) that was statistically significant when compared with No Hold and Passive Hold conditioning

  • Repositioning in the frontal and horizontal planes showed no dependence on the conditioning sequence during the extension test

Read more

Summary

Introduction

An important consideration for practitioners using spinal manipulation is knowing when to intervene (i.e., determining the presence of a manipulable lesion). We are interested in determining if a proprioceptive test could be applied to the neck that might serve as a global measure of neuromuscular function and reveal differences between normal subjects and those who respond to spinal manipulation. As a first step toward this goal and as described in this report, we sought to determine in a relatively normal student population whether repositioning errors of the neck could be induced based upon the thixotropic properties of muscle spindles. A challenge for practitioners using spinal manipulation is identifying when an intervention is required. We tested whether repositioning errors could be induced in a normal population by contraction or shortening of the neck muscles

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.