Abstract

BackgroundAssessments of source reconstruction procedures in electroencephalography and computations of transcranial electrical stimulation profiles require verification and validation with the help of ground truth configurations as implemented by physical head phantoms. For these phantoms, synthetic materials are needed, which are mechanically and electrochemically stable and possess conductivity values similar to the modeled human head tissues. Three-compartment head models comprise a scalp layer with a conductivity range of 0.137 S/m to 2.1 S/m, a skull layer with conductivity values between 0.066 S/m and 0.00275 S/m, and an intracranial volume with an often-used average conductivity value of 0.33 S/m. To establish a realistically shaped physical head phantom with a well-defined volume conduction configuration, we here characterize the electrical conductivity of synthetic materials for modeling head compartments. We analyzed agarose hydrogel, gypsum, and sodium chloride (NaCl) solution as surrogate materials for scalp, skull, and intracranial volume. We measured the impedance of all materials when immersed in NaCl solution using a four-electrode setup. The measured impedance values were used to calculate the electrical conductivity values of each material. Further, the conductivities in the longitudinal and transverse directions of reed sticks immersed in NaCl solution were measured to test their suitability for mimicking the anisotropic conductivity of white matter tracts.ResultsWe obtained conductivities of 0.314 S/m, 0.30 S/m, 0.311 S/m (2%, 3%, 4% agarose), 0.0425 S/m and 0.0017 S/m (gypsum with and without NaCl in the compound), and 0.332 S/m (0.17% NaCl solution). These values are within the range of the conductivity values used for EEG and TES modeling. The reed sticks showed anisotropic conductivity with a ratio of 1:2.8.ConclusionWe conclude that agarose, gypsum, and NaCl solution can serve as stable representations of the three main conductivity compartments of the head, i.e., scalp, skull, and intracranial volume. An anisotropic conductivity structure such as a fiber track in white matter can be modeled using tailored reed sticks inside a volume conductor.

Highlights

  • Assessments of source reconstruction procedures in electroencephalography and computations of transcranial electrical stimulation profiles require verification and validation with the help of ground truth configurations as implemented by physical head phantoms

  • The measured impedance of the reference 0.17% NaCl solutions in the four-electrode [22] setup was 31.41 Ω ± 0.14 Ω ­(Zmeas) which resulted in a conductivity value of 0.301 S/m ± 0.002 S/m

  • The 0.17% NaCl solution demonstrated a conductivity of 0.33 S/m at 25 °C which corresponds to the value that is widely used to model the conductivity of intracranial volume [10]

Read more

Summary

Introduction

Assessments of source reconstruction procedures in electroencephalography and computations of transcranial electrical stimulation profiles require verification and validation with the help of ground truth configurations as implemented by physical head phantoms. For these phantoms, synthetic materials are needed, which are mechanically and electrochemically stable and possess conductivity values similar to the modeled human head tissues. The conductivities in the longitudinal and transverse directions of reed sticks immersed in NaCl solution were measured to test their suitability for mimicking the anisotropic conductivity of white matter tracts Technologies such as transcranial electric stimulation (TES), transcranial current density imaging (CDI), and neuronal source imaging based on electroencephalography (EEG) and magnetoencephalography (MEG) require methodologies for verification and validation. These values demonstrate large variations resulting from inter- and intraindividual variations [7] and differences in experimental methodology [8] and do not necessarily match the individual conductivity profiles [7, 8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.