Abstract

Different types of endoderm, including primitive, definitive and mesendoderm, play a role in the induction and patterning of the vertebrate head. We have studied the formation of the anterior neural plate in chick embryos using the homeobox gene GANF as a marker. GANF is first expressed after mesendoderm ingression from Hensen's node. We found that, after transplantation, neither the avian hypoblast nor the anterior definitive endoderm is capable of GANF induction, whereas the mesendoderm (young head process, prechordal plate) exhibits a strong inductive potential. GANF induction cannot be separated from the formation of a proper neural plate, which requires an intact lower layer and the presence of the prechordal mesendoderm. It is inhibited by BMP4 and promoted by the presence of the BMP antagonist Noggin. In order to investigate the inductive potential of the mammalian visceral endoderm, we used rabbit embryos which, in contrast to mouse embryos, allow the morphological recognition of the prospective anterior pole in the living, pre-primitive-streak embryo. The anterior visceral endoderm from such rabbit embryos induced neuralization and independent, ectopic GANF expression domains in the area pellucida or the area opaca of chick hosts. Thus, the signals for head induction reside in the anterior visceral endoderm of mammals whereas, in birds and amphibia, they reside in the prechordal mesendoderm, indicating a heterochronic shift of the head inductive capacity during the evolution of mammalia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call