Abstract

PurposeThis study quantified the linear and angular kinematics that result from purposeful heading during youth soccer games, and the influence of game scenario and head impact location on these magnitudes. MethodThis observational study recruited thirty-six female soccer players (13.4 ± 0.9 years old) from three elite youth soccer teams (U13, U14, U15) and followed for an entire soccer season. Players wore wireless sensors during each game to quantify head impact magnitudes. A total of 60 regular season games (20 games per team) were video recorded, and purposeful heading events were categorized by game scenario (e.g. throw in), and head impact location (e.g. front of head). ResultsGame scenario had a statistically significant effect on the linear head acceleration, and rotational head velocity, that resulted from purposeful headers. Rotational velocity from purposeful headers varied significantly between head impact locations, with impacts to the top of the head (improper technique) resulting in larger peak rotational velocities than impacts to the front of the head (proper technique); this was also the case for the linear acceleration for punts. ConclusionOur findings suggest that the magnitude for both linear and angular head impact kinematics depend on the game scenario and head impact location. Headers performed with the top of the head (improper technique) result in larger rotational velocities compared to the front of the head (proper technique). Accordingly, youth players should be educated on how to execute proper heading technique to reduce head impact accelerations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call