Abstract

We present a hybrid neural network architecture that supports the estimation of binocular disparity in a cyclopean, head-centric coordinate system without explicitly establishing retinal correspondences. Instead the responses of binocular energy neurons are gain-modulated by oculomotor signals. The network can handle the full six degrees of freedom of binocular gaze and operates directly on image pairs of possibly varying contrast. Furthermore, we show that in the absence of an oculomotor signal the same architecture is capable of estimating the epipolar geometry directly from the population response. The increased complexity of the scenarios considered in this work provides an important step towards the application of computational models centered on gain modulation mechanisms in real-world robotic applications. The proposed network is shown to outperform a standard computer vision technique on a disparity estimation task involving real-world stereo images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.