Abstract
We describe a novel method for automatic detection of errors in human-robot interactions. Our approach is to detect errors based on the classification of head and shoulder movements of humans who are interacting with erroneous robots. We conducted a user study in which participants interacted with a robot that we programmed to make two types of errors: social norm violations and technical failures. During the interaction, we recorded the behavior of the participants with a Kinect v1 RGB-D camera. Overall, we recorded a data corpus of 237,998 frames at 25 frames per second; 83.48% frames showed no error situation; 16.52% showed an error situation. Furthermore, we computed six different feature sets to represent the movements of the participants and temporal aspects of their movements. Using this data we trained a rule learner, a Naive Bayes classifier, and a k-nearest neighbor classifier and evaluated the classifiers with 10-fold cross validation and leave-one-out cross validation. The results of this evaluation suggest the following: (1) The detection of an error situation works well, when the robot has seen the human before; (2) Rule learner and k-nearest neighbor classifiers work well for automated error detection when the robot is interacting with a known human; (3) For unknown humans, the Naive Bayes classifier performed the best; (4) The classification of social norm violations does perform the worst; (5) There was no big performance difference between using the original data and normalized feature sets that represent the relative position of the participants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.