Abstract
Integrin-mediated cell adhesion to extracellular matrix (ECM) critically contributes to cancer cell therapy resistance and DNA double strand break (DSB) repair. c-Abl tyrosine kinase has been linked to both of these processes. Based on our previous findings indicating c-Abl hyperphosphorylation on tyrosine (Y) 412 and threonine (T) 735 upon beta1-integrin inhibition, we hypothesized c-Abl tyrosine kinase as an important mediator of beta1-integrin signaling for radioresistance. In a panel of 8 cell lines from different solid cancer types grown in 3D laminin-rich ECM cultures, we targeted beta1 integrin with AIIB2 (mAb) and c-Abl with Imatinib with and without X-ray irradiation and subsequently examined clonogenic survival, residual DSBs, protein expression and phosphorylation. Single or combined treatment with AIIB2 and Imatinib resulted in cell line-dependent cytotoxicity. Intriguingly, we identified a subgroup of this cell line panel that responded with a higher degree of radiosensitization to AIIB2/Imatinib relative to both single treatments. In this subgroup, we observed a non-statistically significant trend between the radioresponse and phospho-c-Abl Y412. Mechanistically, impairment of DNA repair seems to be associated with radiosensitization upon AIIB2/Imatinib and AIIB2/Imatinib-related radiosensitization could be reduced by exogenous overexpression of either wildtype or constitutively active c-Abl forms relative to controls. Our data generated in more physiological 3D cancer cell culture models suggest c-Abl as further determinant of radioresistance and DNA repair downstream of beta1-integrin. For solid cancers, c-Abl phosphorylation status might be an indicator for reasonable Imatinib application as adjuvant for conventional radio(chemo)therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.