Abstract

Three alkyltrimethylammonium thiomolybdates, [R–N(CH3)3]2MoS4 (where R = lauryl, myristyl or cetyl) were synthesized in aqueous solution, and characterized by 1H-NMR spectroscopy. These alkyltrimethylammonium thiomolybdates were used (the lauryl and myristyl thiomolybdates for the first time) as precursors for in situ prepared MoS2 catalysts, activated during the hydrodesulfurization of dibenzothiophene. The catalysts were analyzed by EDX, showing large voids and a S/Mo ratio around 2. High surface areas up to 443 m2/g and type IV adsorption–desorption nitrogen isotherms were obtained. X-ray diffraction showed that the catalysts are poorly crystalline, with a very weak (002) peak intensity for all samples except the MoS2 catalyst prepared from pure ammonium tetrathiomolybdate precursor. A high dibenzothiophene conversion (74%) was observed with the catalyst obtained from the lauryltrimethylammonium thiomolybdate precursor, attributed mainly to its high specific surface area. Selectivity results showed that all the prepared catalysts strongly favored the hydrogenation pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.