Abstract

There currently exists no widespread high dose-rate (HDR) brachytherapy afterloader quality assurance (QA) tool for simultaneously assessing the afterloader's positional, temporal, transit velocity and air kerma strength accuracy. The purpose of this study was to develop a precise and rigorous technique for performing daily QA of HDR brachytherapy afterloaders, incorporating QA of: dwell position accuracy, dwell time accuracy, transit velocity consistency and relative air kerma strength (AKS) of an Ir-192 source. A Sharp ProGuide 240mm catheter (Elekta Brachytherapy, Veenendaal, The Netherlands) was fixed 5mm above a 256 channel epitaxial diode array 'dose magnifying glass' (DMG256) (Centre for Medical and Radiation Physics, University of Wollongong). Three dwell positions, each of 5.0s dwell times, were spaced 13.0mm apart along the array with the Flexitron HDR afterloader (Elekta Brachytherapy, Veenendaal, The Netherlands). The DMG256 was connected to a data acquisition system (DAQ) and a computer via USB2.0 link for live readout and post-processing. The outputted data files were analyzed using a Python script to provide positional and temporal localization of the Ir-192 source by tracking the centroid of the detected response. Measurements were repeated on a weekly basis, for a period of 5weeks to determine the consistency of the measured parameters over an extended period. Using the DMG256 for relative AKS measurements resulted in measured values within 0.6%-3.0% of the expected activity over a 7-week period. The sub-millisecond temporal accuracy of the device allowed for measurements of the transit velocity with an average of (10.88±1.01) cm/s for 13mm steps. The dwell position localization for 1, 2, 3, 5, and 10mm steps had an accuracy between 0.1 and 0.3mm (3σ), with a fixed temporal accuracy of 10ms. The DMG256 silicon strip detector allows for clinics to perform rigorous daily QA of HDR afterloader dwell position and dwell time accuracy with greater precision than the current standard methodology using closed circuit television and a stopwatch. Additionally, DMG256 unlocks the ability to perform measurements of transit velocity/time and relative AKS, which are not possible using current standard techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.