Abstract

Multivariate time series (MTS) prediction has been widely adopted in various scenarios. Recently, some methods have employed patching to enhance local semantics and improve model performance. However, length-fixed patch are prone to losing temporal boundary information, such as complete peaks and periods. Moreover, existing methods mainly focus on modeling long-term dependencies across patches, while paying little attention to other dimensions (e.g., short-term dependencies within patches and complex interactions among cross-variavle patches). To address these challenges, we propose a pure MLP-based HDMixer, aiming to acquire patches with richer semantic information and efficiently modeling hierarchical interactions. Specifically, we design a Length-Extendable Patcher (LEP) tailored to MTS, which enriches the boundary information of patches and alleviates semantic incoherence in series. Subsequently, we devise a Hierarchical Dependency Explorer (HDE) based on pure MLPs. This explorer effectively models short-term dependencies within patches, long-term dependencies across patches, and complex interactions among variables. Extensive experiments on 9 real-world datasets demonstrate the superiority of our approach. The code is available at https://github.com/hqh0728/HDMixer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call