Abstract

Many epidemiological studies found low plasma levels of high-density lipoprotein (HDL) cholesterol (HDL-C) associated with an increased risk of atherosclerotic cardiovascular disease (ASCVD). In cell culture and animal models, HDL particles show many anti-atherogenic actions. However, until now, clinical trials did not find any prevention of ASCVD events by drugs elevating HDL-C levels, at least not beyond statins. Also, genetic studies show no associations of HDL-C levels altering variants with cardiovascular risk. Therefore, the causal role and clinical benefit of HDL-C elevation in ASCVD are questioned. However, the interpretation of previous data has important limitations: First, the inverse relationship of HDL-C with the risk of ASCVD is limited to concentrations < 60 mg/dl (< 1.5 mmol/l). Higher concentrations do not reduce the risk of ASCVD events and are even associated with increased mortality. Therefore, neither the higher-the-better strategies of earlier drug developments nor the assumption of linear cause-and-effect relationships in Mendelian randomization trials are justified. Second, most of the drugs tested so far do not act specifically on HDL metabolism. Therefore, the futile endpoint studies question the clinical benefit of the investigated drugs, but not the importance of HDL in ASCVD. Third, the vascular functions of HDL are not exerted by its cholesterol content (i.e. HDL-C), but by a variety of other molecules. Comprehensive knowledge of the structure-function-disease relationships of HDL particles and their molecules is a prerequisite for testing their physiological and pathogenic relevance and possibly for optimizing the diagnosis and treatment of persons with HDL-associated risk of ASCVD, but also for other diseases, such as diabetes, chronic kidney disease, infections, autoimmune and neurodegenerative diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call