Abstract
Cholesterol in the circulation is mostly transported in an esterified form as a component of lipoproteins. The majority of these cholesteryl esters are produced in nascent, discoidal high density lipoproteins (HDLs) by the enzyme, lecithin:cholesterol acyltransferase (LCAT). Discoidal HDLs are discrete populations of particles that consist of a phospholipid bilayer, the hydrophobic acyl chains of which are shielded from the aqueous environment by apolipoproteins that also confer water solubility on the particles. The progressive LCAT-mediated accumulation of cholesteryl esters in discoidal HDLs generates the spherical HDLs that predominate in normal human plasma. Spherical HDLs contain a core of water insoluble, neutral lipids (cholesteryl esters and triglycerides) that is surrounded by a surface monolayer of phospholipids with which apolipoproteins associate. Although spherical HDLs all have the same basic structure, they are extremely diverse in size, composition, and function. This review is concerned with how the biogenesis of discoidal and spherical HDLs is regulated and the mechanistic basis of their size and compositional heterogeneity. Current understanding of the impact of this heterogeneity on the therapeutic potential of HDLs of varying size and composition is also addressed in the context of several disease states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.